Sharp bounds for cumulative distribution functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cumulative distribution networks: Inference, estimation and applications of graphical models for cumulative distribution functions

Cumulative distribution networks: Inference, estimation and applications of graphical models for cumulative distribution functions Jim C. Huang Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto 2009 This thesis presents a class of graphical models for directly representing the joint cumulative distribution function (CDF) of many random variabl...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Sharp bounds for harmonic numbers

In the paper, we collect some inequalities and establish a sharp double inequality for bounding the n-th harmonic number.

متن کامل

Sharp bounds for population recovery

The population recovery problem is a basic problem in noisy unsupervised learning that has attracted significant research attention in recent years [WY12, DRWY12, MS13, BIMP13, LZ15, DST16]. A number of different variants of this problem have been studied, often under assumptions on the unknown distribution (such as that it has restricted support size). In this work we study the sample complexi...

متن کامل

Cumulative Distribution Networks and the Derivative-sum-product Algorithm: Models and Inference for Cumulative Distribution Functions on Graphs

We present a class of graphical models for directly representing the joint cumulative distribution function (CDF) of many random variables, called cumulative distribution networks (CDNs). Unlike graphs for probability density and mass functions, in a CDN, the marginal probabilities for any subset of variables are obtained by computing limits of functions in the model. We will show that the cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2016

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2015.12.024